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Abstract

Recently, a variety of regularization techniques have been
widely applied in deep neural networks, which mainly focus
on the regularization of weight parameters to encourage gener-
alization effectively. Label regularization techniques are also
proposed with the motivation of softening the labels while ne-
glecting the relation of classes. Among them, the technique of
knowledge distillation proposes to distill the soft label, which
contains the knowledge of class relations. However, this tech-
nique needs to pre-train an extra cumbersome teacher model.
In this paper, we propose a method called Knowledge Refinery
(KR), which enables the neural network to learn the relation of
classes on-the-fly without the teacher-student training strategy.
We propose the definition of decoupled labels, which consist
of the original hard label and the residual label. To exhibit the
generalization of KR, we evaluate our method in both fields
of computer vision and natural language processing. Our em-
pirical results show consistent performance gains under all
experimental settings.

Introduction
Deep neural networks (DNNs) have recently been widely
and successfully used in various tasks due to their powerful
capabilities of extracting features. However, DNNs often con-
tain millions of trainable parameters which easily cause the
over-fitting problem. To solve this problem, many regular-
ization methods including regularization on parameters (e.g.,
Dropout (Srivastava et al. 2014)), regularization on data (e.g.,
data augmentation), and regularization on labels (e.g., label
smoothing(Srivastava, Greff, and Schmidhuber 2015)) have
been developed to avoid over-fitting problems. Among them,
parameter regularization methods need to modify and retrain
DNN models, while data regularization methods require col-
lecting a huge amount of training samples, both of which
limit the practical value of DNNs in reality.

By contrast, label regularization methods (Szegedy et al.
2016; Pereyra et al. 2017; Bagherinezhad et al. 2018) are
performed in a more friendly way and have recently received
much attention, as they do not need to retrain/modify network
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Figure 1: (a) Label by label smoothing, (b) Label by knowl-
edge distillation, (c) Label by knowledge refinery. Label
smoothing neglects the class-level relation. Knowledge distil-
lation need to pre-train a cumbersome teacher model. Instead,
our method incorporates the relation of classes by decoupled
labels WITHOUT pre-training a teacher model.

structures. The general idea is that one-hot encoded labels
are so hard which make DNN suffer from the over-fitting
problem. In general, these methods can be further divided
into two types of methods, label smoothing (Szegedy et al.
2016) and label softening based methods (Hinton, Vinyals,
and Dean 2015). Label smoothing reduces the confidence
score by uniformly redistributing 10% of the weight from
the ground-truth class to incorrect classes, while neglecting
the knowledge of class-level relations (see Fig. 1(a)). For in-
stance, an image of a “dog” that has similar visual appearance
to a “cat” should have a higher label score than an image of a
“plane” that has different visual appearance. To make labels
more informative, label softening based methods attempt to
extract the visual relations between classes to impose such
knowledge into the training phase. Typical methods of this
type are knowledge distillation methods (Hinton, Vinyals,
and Dean 2015) that generate soft labels from a cumbersome
teacher model to train a small student model (see Fig. 1(b)).
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Although these existing label regularization methods relieve
the over-confidence problem with soft labels, they may suffer
from the under-confidence problem when the target label is
over-smoothed. Therefore, they all have to adjust trade-off
hyper-parameters to avoid over-/under-confidence problems.
Overall, we can conclude that the “ideal” label regularization
method should satisfy the following conditions: (i) Relation
expression. The representation of labels consider the rela-
tion of classes. (ii) Online training. Learning the relation of
classes on-the-fly without pre-training an extra teacher model.
(iii) Flexibility. There is no need to adjust the softness of label
representation.

To this end, we propose a novel label regularization
method, called Knowledge Refinery (KR), by learning the
knowledge of class-specific information and class-level re-
lations dynamically. We decouple the “ideal” label into two
components, the target label (i.e. the hard label or the smooth
label) and the non-target label (i.e. the residual label), as
is shown in Fig. 1(c). More specifically, instead of directly
updating the target label, we update the residual label during
training iteratively by the proposed knowledge refinery regu-
larizer module. Compared with the technique of knowledge
distillation (KD) which requires an extra teacher model, KR
produces dynamical and informative labels on-the-fly. Over-
all, KR satisfies all the above conditions of the “ideal” label
regularization method — Relation expression, Online train-
ing, and Flexibility. Furthermore, KR can serve as a universal
regularizer and can be equipped into arbitrary vanilla deep
neural networks.

The main contributions can be summarized as follows:

• We propose a new label regularization method, called
knowledge refinery (KR), to enable networks to learn more
informative knowledge from decoupled labels, which con-
sists of hard label and residual label.

• We propose a mutual learning strategy to learn the relation
of classes on-the-fly without teacher models. The extra
memory and time consumption of our method are negligi-
ble in practice.

• The proposed KR regularizer serves as a plug-n-play mod-
ule and can be equipped into an arbitrary vanilla DNN.
The comprehensive experiments on different public bench-
mark datasets for image/text classification tasks verify the
effectiveness of our method.

Related Works
Knowledge Distillation
Previous research on knowledge distillation (Hinton, Vinyals,
and Dean 2015; Lopez-Paz et al. 2015; Zhu, Gong et al. 2018;
Zhang et al. 2018; Wang, Liu, and Tao 2020) explored the
transmission from deep and cumbersome teacher models to
shallow and light student models. The rationale behind this
technology is to ensemble the information distilled by one
or more teacher models as extra supervision for the student
model. Hinton et al. (2015) first applied soft labels produced
by a teacher model to train a small student model. The soft
label refined by the teacher model is defined as q(soft)i =

exp(zi/T )∑K
j=1 exp(zj/T )

, where K is the number of categories and T

is a temperature that controls the smoothness of the soft label.
With the technique of knowledge distillation, the student
model can learn from the cumbersome teacher model and
therefore improves the performance. In contrast, our method
is more efficient without the teacher-student training strategy,
and the hyper-parameter in our loss function is insensitive in
practice.

Label Regularization
There exist different types of regularization methods to im-
prove the generalization of neural networks, including (i)
regularization on model parameters like Dropout (Srivas-
tava et al. 2014; Zoph et al. 2018; Wan et al. 2013), (ii)
regularization on model inputs like data augmentation, (iii)
regularization on features like batch normalization and group
normalization (Ioffe and Szegedy 2015), and (iv) regulariza-
tion on labels like label regularization (Szegedy et al. 2016;
Xie et al. 2016; Lee et al. 2018; Müller, Kornblith, and Hin-
ton 2019; Xu et al. 2020; Chen et al. 2020). Among them,
regularization methods on model parameters need to change
the network structure and retrain the model, while they model
inputs need to create a huge number of training samples. In
contrast, regularization methods on labels are more efficient
and train-friendly without the need of modifying network
structures/inputs. In contrast to these methods, our method
regularizes labels by learning the relations of labels using
negligible extra computation consumption.

Preliminary
In this paper, we consider a K-class classifier hθ(x) : X →
C, parameterized by θ, where X is the input space and C =
{1, ...,K} is the label space. Assuming the classifier h =
g ◦ f can be decomposed of two embedding functions, one
is fθ : X → Z , which convert input features to logit vectors
z = fθ(x), and the other one is the softmax layer g : Z → C,
which convert logit vectors to the specific category. The cross-
entropy loss (CE) function isLCE(p, q) = −

∑K
i=1 pi log qi,

where p = softmax(z), and q is the label vector like the
one-hot encoded vector. Kullback-Leibler (KL) divergence is
DKL(p||q) =

∑K
i=1 pi log(

pi
qi
). Jensen-Shannon (JS) diver-

gence is DJS(p||q) = 1
2DKL(p||p+q

2 ) + 1
2DKL(q||p+q

2 ).

Rethink Knowledge Distillation
In this section, we introduce some observations which moti-
vate us to decouple the label. Let us review the loss function
by knowledge distillation method (Hinton, Vinyals, and Dean
2015), which add a KL divergence loss term to the original
cross-entropy loss function as follows:

LKD = (1− α)Lhard + αT 2Lsoft (1)

where Lhard = LCE(p, q) and Lsoft = DKL(p||q(soft))
(2)

where α is a trade-off parameter and T is the temperature
factor. Let us rethink this loss function LKD. Given a model
to recognize images belong to three classes “cat”, “dog”,
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(a) 1st epoch (µ = 44.12%) (b) 10th epoch (µ = 84.60%)(c) 200th epoch (µ = 99.99%) (d) 300th epoch (µ = 99.99%)

(e) 1st epoch (µ = 44.12%) (f) 10th epoch (µ = 84.60%) (g) 200th epoch (µ = 99.99%) (h) 300th epoch (µ = 99.99%)

Figure 2: Visualization of the learned soft labels and residual labels: (a)(b)(c)(d) represent the soft label, (e)(f)(g)(h) represent the
corresponding residual label with regard to (a)(b)(c)(d), respectively. µ denotes the training accuracy after the specific epoch.
The captions of the x-axis from top to bottom and of the y-axis from left to right are: plane, car, bird, cat, deer, dog, frog, horse,
ship, ship, and truck.

“plane”. Supposing the soft label q(soft) of this “cat” im-
age is [0.6, 0.3, 0.1], which is learned by the teacher model.
And suddenly the confidence probabilities p predicted by the
model for this image is [0.7, 0.2, 0.1]. As a result, we know
that Lsoft would force the output p close to the soft label q.
That is, Lsoft attempt to decrease the confidence probability
of “cat” from 0.7 to 0.6. By contrast, Lhard (i.e. the cross-
entropy loss based on the one-hot encoded label) would force
the confidence probability of “cat” from 0.7 close to 1.0. We
can naturally find that the optimization objective of Lsoft and
Lhard in the loss function LKD is contradictory in this case.
In other words, the model trained with LKD may struggle
with the balance of under- and over-confidence problem.

We also observed the learned soft labels and got some in-
teresting findings. Take CIFAR-10 dataset for an example, we
obtain the soft labels of all categories by the following steps:
(i) We save the predicted probability pi = softmax(z) for
each sample i, (ii) Calculate the soft label q̂k of category k
by q̂k = 1

|Tk|
∑
i∈Tk pi, where Tk denotes the set of samples

of category k. Afterwards, we can obtain the soft labels of K
categories and each q̂k is a vector of size K. That means we
can use a matrix of size K ×K to represent these soft labels.
In Fig. 2 (the first row), we give the visualization of the soft
labels of categories learned after 1, 10, 200, and 300 epochs.
As we can see, the soft labels become harder with regard
to the increasing epochs, and finally the probabilities of the
ground-truth labels (diagonal) almost dominate the whole
heatmap. To expose the probabilities of non-ground-truth
labels (non-diagonal), we attempt to mask the ground-truth
position k in the calculation of softmax function as follows:

z(res) = (z)k, (3)

p(res) = softmax(z(res)), (4)

where (z)k means to mask the k-th position of z. The masked
probability p(res) is called residual output in this paper. Af-
terwards, we use the same strategy to calculate the masked
soft labels (i.e. residual label) of categories on p(res) as
q̂
(res)
k = 1

|Tk|
∑
i∈Tk p

(res)
i , and the visualization can be

seen in Fig. 2 (the second row). As a result, we can surpris-
ingly find that (i) the heatmaps keep soft consistently from
the beginning to end, (ii) the heatmaps have fairly well consis-
tency, which means that the relation of labels can be learned
fairly well even after only one epoch. Based on these findings,
we think that the masked soft label is a better representation
than the soft label.

Overall, the non-diagonal disappearance of the heatmaps
in the first row and the softness consistency of the heatmaps
in the second row motivated us to explore the masked soft
label (i.e. residual label). To this end, we decouple the origi-
nal label to two components — hard label and residual label.
Here the hard label means the original one-hot encoded la-
bel which represents the specific-class information, and the
residual label means the masked soft label which represents
the class-level relations. The main advantages of decoupled
labels include the following aspects: (i) there is no need to set
hyper-parameter to trade-off the hard loss and the soft loss
since the hard label and the residual label can complement
each other well. (ii) the softness consistency allows us to
design a regularization strategy for the residual label. We
will introduce the details of our proposed regularizer in later
sections.

Knowledge Refinery
Our Knowledge Refinery (KR) method aims to regularize
the neural networks on-the-fly during the training phase. In
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Figure 3: Pipeline of Knowledge Refinery with decoupled labels — the residual label q(res) and the hard label q.

general, KR can be treated as a plug-n-play regularizer mod-
ule, which can be unified into an arbitrary vanilla DNN,
such as AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
VGG(Simonyan and Zisserman 2014), and ResNet (He et al.
2016a), as is shown in Fig. 3.

Workflow
The KR framework briefly consists of two modules — Origi-
nal Neural Network and Knowledge Refinery Regularizer.

Original Neural Network The module of Original Neural
Network is a vanilla neural network supervised by one-hot
encoded labels (i.e. hard label). The loss of this module is
the cross-entropy loss between the predicted probabilities p
and one-hot encoded labels q, which is typically as Lhard =
LCE(p, q) (i.e. hard loss).

Knowledge Refinery Regularizer The module of Knowl-
edge Refinery Regularizer works on the logits z outputed
by Original Neural Network. Firstly, recall the definition of
residual label in previous section, we mask the k-th position
of z, where k represents the target class index. Next, as is
shown in Eq. 3 and Eq. 4, we normalize the masked logits
z(res) using the softmax function, and then we obtain the pre-
dicted residual probability p(res). On the other side, we adopt
an embedding layer whose weight is a matrix S ∈ RK×K ,
which represents Residual Correlation Matrix. Then we can
directly obtain the residual label of category k by adopting
softmax normalization on the k-th row of S as follows:

q(res) = softmax(Sk). (5)
The loss of Knowledge Refinery Regularizer composes of
residual loss and update loss. More specifically, the residual
lossLres and the update lossLupd is a pair of mutual learning
losses, the definition of which is as follows:

Lupd = DKL(q
(res)||p(res)), (6)

Lres = DKL(p
(res)||q(res)), (7)

Lmut = Lupd + Lres. (8)

Note that we initialize Residual Correlation Matrix to zero-
filled matrix. That means the initial residual labels of cate-
gories are uniform distributions. The overall workflow can
refer to Alg. 1. By this mutual learning strategy, we allow
the backbone network and Residual Correlation Matrix learn
from each other simultaneously. Moreover, recall the ob-
served softness consistency of the residual label which is
mentioned before, this mutual learning strategy also enable
the model to avoid “consistency shift” by stabilizing the
learned residual probabilities p(res).

Backward Propagation
In the mutual learning strategy, we aim to use Lupd to update
the residual labels derived from S and use Lres to regularize
the backbone network fθ via the learned residual probabili-
ties p(res). Therefore, we block the useless gradients in Lupd
and Lres in the backward-propagation phase, respectively.
Specifically, we propagate the gradient of Lupd only to the
embedding layer S by blocking the gradient of p(res) in
Eq. 6. Same for the backward-propagation of Lres, we block
the gradient of q(res) in Eq. 7 so that Lres only affects the
backbone network fθ. With this backward-propagation mech-
anism, p(res) and q(res) can be learned mutually. The overall
loss is simply the linear summation of Lhard and Lmut as
follows:

Ltot = Lhard + αLmut. (9)

Objective
In this section, we respectively analyze the objective of the
backbone network fθ and Residual Correlation Matrix S
based on the aforementioned backward-propagation mech-
anism. For the backbone network fθ, the objective can be
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Algorithm 1 Workflow of Knowledge Refinery

1: S ← 0 . Initialize the residual correlation matrix with
zero matrix.

2: for epoch = 1, 2, . . . do
3: z = fθ(x) . Here we omit mini-batch for

simplicity.
4: p = softmax(z)
5: Lhard = LCE(p, q) . Calculate the hard loss.
6: z(res) = (z)k . k is the index of the ground-truth

class.
7: p(res) = softmax(z(res))
8: q(res) = softmax(Sk)
9: Lupd = DKL(q

(res)||p(res)) . Calculate the update
loss.

10: Lres = DKL(p
(res)||q(res)) . Calculate the

residual loss.
11: θ ← θ − β∇Lhard + αLres . Optimize the

backbone network.
12: S ← S − β∇αLupd . Optimize the residual

correlation matrix.
13: end for

formulated as follows:

argmin
θ

(Lhard + αLres). (10)

On the other side, the objective of Residual Correlation Ma-
trix S can be formulated as follows:

argmin
S

(αLupd), (11)

where α is a hyper-parameter. In practice, we set the hyper-
parameter α to a exponentially decreasing function α = γt,
where t denotes the number of epochs and γ is the decay
factor which is set to 0.99 empirically. As is mentioned in
previous section, the hard loss and the residual loss can be
complement each other well, therefore there is no need to
trade-off these two losses. Our experiments also show that
the value of γ is insensitive to the performance in the later
section. For the theoretical analysis on the effectiveness of
knowledge refinery, please refer to Appendix A.

Label Smoothing Enhanced KR
Label smoothing (Szegedy et al. 2016) proposed a mecha-
nism for encouraging the model to be less confident about
ground-truth to improve generalization. Typically, the smooth
label q(smooth) gives 10% confidence of the ground-truth
class to incorrect classes uniformly as{

q
(smooth)
i = 0.9 i = k,

q
(smooth)
i = 0.1 i 6= k,

(12)

In our method, we can easily apply the technique of label
smoothing by replacing the hard label to the smooth label.
After enhancing by label smoothing, the over loss Eq. 9 will
be changed as

Ltot = Lsmooth + αLmut. (13)
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Figure 4: (Left) DJS(p
(res)||q(res)) on CIFAR-100 dataset.

(Right) Test accuracy on CIFAR-100 dataset.

where Lsmooth = DKL(p||q(smooth)) (14)

In practice, label smoothing enhanced knowledge refinery
achieves (KR-LS) better performance consistently. Please
refer to Appendix B for the theoretical analysis on label
smoothing enhanced knowledge refinery.

Experiments
Knowledge refinery (KR) can be applied to arbitrary neural
network. To demonstrate the generalization ability of our
method, we perform extensive tests on two general classifica-
tion tasks: the image classification and the text recognition
tasks. Furthermore, we conduct comparison experiments with
two well-known soft label-based methods. Finally, we con-
duct experiments of the sensitivity analysis to demonstrate
the robustness of hyper-parameter α. We implemented all
experiments with Pytorch framework on a single NVIDIA
Tesla V100 GPU.

Image Recognition
Datasets. We use three benchmark datasets of image recog-
nition in our evaluations: (i) CIFAR-10 (Krizhevsky and
Hinton 2009): A dataset consisting of 60, 000 images with
32 × 32 pixel. It has 10 classes, of which each class has
50, 000/10, 000 samples in train/test set. (ii) CIFAR-100
(Krizhevsky and Hinton 2009): Similar to CIFAR-10, but
it consists of 100 classes, in which each class has 500/100
samples in train/test set. (iii) ImageNet-12 (Russakovsky et al.
2015): A huge image recognition dataset from ILSVRC 2012,
which consisting of more than 14 million samples with total
1, 000 classes.

Settings. For CIFAR-10 and CIFAR-100 datasets, we
use ResNet-18 (He et al. 2016b) with pre-activation and
WideResNet-28-10 (Zagoruyko and Komodakis 2016) as
backbone network architectures. We use SGD optimizer with
Nesterov momentum (Sutskever et al. 2013) and set an initial
learning rate to 0.1, momentum to 0.9 and mini-batch size to
128. The learning rate dropped by 0.1 at the 60/120/160th

epochs and we train for 200 epochs. The hyper-parameter
α in all experiments is an exponential decay function γt,
where γ = 0.99. We also adopt data augmentation such as
horizontal flips and random crops to samples during the train-
ing stage. For ImageNet-12 dataset, we use ResNet-50-v1,
ResNet-101-v1,and ResNet-152-v1 (He et al. 2016a) as back-
bone networks to evaluate our method. In addition, we use
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Datasets CIFAR-10 CIFAR-100

Model Method Error Rate Params Error Rate Params

ResNet18

Baseline 4.72± 0.21 11.17M 22.46± 0.31 11.22M
LS 4.59± 0.10 (↓ 0.13) 11.17M 21.76± 0.26 (↓ 0.70) 11.22M
KR* 4.52± 0.13 (↓ 0.20) 11.17M + 0.1K 21.35± 0.25 (↓ 1.11) 11.22M + 10K
KR-LS* 4.40± 0.14 (↓ 0.32) 11.17M + 0.1K 20.42± 0.21 (↓ 2.04) 11.22M + 10K

WideResNet-28-10

Baseline 3.87± 0.08 36.48M 18.80± 0.08 36.54M
LS 3.72± 0.12 (↓ 0.15) 36.48M 18.87± 0.11 (↑ 0.07) 36.54M
KR* 3.65± 0.15 (↓ 0.22) 36.48M + 0.1K 18.69± 0.17 (↓ 0.11) 36.54M + 10K
KR-LS* 3.53± 0.25 (↓ 0.34) 36.48M + 0.1K 18.40± 0.24 (↓ 0.40) 36.54M + 10K

Table 1: Results on CIFAR-10/CIFAR-100. (%) (results averaged over 5 runs, * denotes our method)

Method ResNet-50 ResNet-101 ResNet-152

Top-1 Err. Top-5 Err. Top-1 Err. Top-5 Err. Top-1 Err. Top-5 Err.

Baseline 23.87 6.97 22.47 6.18 22.29 6.11
LS 23.75 (↓ 0.12) 6.76 (↓ 0.21) 22.34 (↓ 0.13) 6.07 (↓ 0.11) 22.07 (↓ 0.22) 5.98 (↓ 0.13)
KR* 23.47 (↓ 0.40) 6.37 (↓ 0.60) 22.09 (↓ 0.38) 5.95 (↓ 0.23) 21.41 (↓ 0.88) 5.56 (↓ 0.55)
KR-LS* 23.20 (↓ 0.67) 6.22 (↓ 0.75) 21.98 (↓ 0.49) 5.81 (↓ 0.37) 21.23 (↓ 1.06) 5.29 (↓ 0.82)

Table 2: Results on ImageNet-12. (%) (* denotes our method)

mixed precision training (Micikevicius et al. 2017) in Ima-
geNet experiments which offers significant computational
speedup.

Results on CIFAR. The results on two CIFAR datasets are
shown in Table 1. In each baseline, we trained the backbone
network with only the one-hot encoded label. We compare
our proposed knowledge Refinery (KR) and label smoothing
enhanced knowledge refinery (KR-LS) with label smoothing
(LS) and baselines, of which the best results are marked in
bold. As we can see, LS, KR, and KR-LS all outperform base-
lines of different network structures. Moreover, KR achieves
competitive gains over LS, and KR-LS obtains the best perfor-
mance in all cases consistently, which shows the well comple-
mentary between KR and LS. All these observations verify
the effectiveness of KR and KR-LS. Specifically, KR-LS
achieves 2.04% improvement over the baseline with ResNet-
18 model on CIFAR-100 dataset. Note that our KR-based
methods improve the performance with only adding negligi-
ble parameters to the original neural network. For a K-class
task, the extra memory consumption of KR-based methods is
O(K2). Compared with the huge number of parameters of
the backbone network, this consumption is exactly negligible.
In addition, the training curve is shown in Fig. 4 (Right). We
also visualize DJS(p

(res)||q(res)) in Fig. 4 (Left) to show
our KR regularizer make p(res) and q(res) closer during
training, which is what we expect.

Results on ImageNet. For the huge ImageNet-12 dataset,
the overall results are shown in Table 2, where the Top-N error
rate is the fraction of test images for which the ground-truth
label is not among the N labels considered most probable by
the model. As we can see, compared with the baselines, KR

and KR-LS can consistently improve the Top-1 and Top-5
error rate in all cases. Specifically, KR-LS method achieves
the best performance which has 1.06% Top-1 and 0.82% Top-
5 improvement over those of the baselines in all cases with
ResNet-152 model.

Text Classification
Datasets. We use three benchmark datasets of text classi-
fication in our evaluations: (i) AGNews (Del Corso, Gulli,
and Romani 2005): A topic classification dataset over 4 cate-
gories. (ii) Yahoo! Answers1: A topic classification dataset
over 10 categories. (iii) Yelp Review Full2: A dataset of senti-
ment classification in which polarity star labels ranging from
1 to 5.

Settings. For all datasets, we evaluate knowledge refinery
regularizer on four general models for text classification, in-
cluding FastText (Joulin et al. 2017), TextRNN (Lai et al.
2015), CharCNN (Zhang, Zhao, and Lecun 2015), and Trans-
former (Vaswani et al. 2017). We compare the baseline and
KR-LS in all experiments. The baseline of each model de-
notes the original network with only hard loss.

Results. The results are shown in Table 3. As we can see,
KR-LS can improve the performance under all settings con-
sistently. These experiments exhibit the generalization of
our KR method no matter with which backbone network.
Therefore, we believe that KR regularizer can be equipped
to arbitrary hard label-based methods to improve the perfor-
mance.

1https://webscope.sandbox.yahoo.com
2https://www.yelp.com/dataset
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Dataset Method Baseline KR-LS

AGNews

FastText 11.03 10.87 (↓ 0.16)
TextRNN 11.15 10.43 (↓ 0.28)
CharCNN 14.22 12.09 (↓ 2.13)
Transformer 10.49 9.71 (↓ 0.78)

Yahoo Answer

FastText 29.42 28.75 (↓ 0.67)
TextRNN 31.13 29.67 (↓ 1.46)
CharCNN 29.76 28.50 (↓ 1.26)
Transformer 29.03 28.76 (↓ 0.27)

Yelp-Full

FastText 40.66 40.02 (↓ 0.64)
TextRNN 42.81 41.99 (↓ 0.82)
CharCNN 39.28 39.02 (↓ 0.26)
Transformer 38.50 37.68 (↓ 0.82)

Table 3: Results of text classification. Metric: Err. (%)

Network Method Error Rate Params.

ResNet-32

Baseline 31.01 1× P1

KD 30.52 ∼ 3× P1

DML 29.07 ∼ 2× P1

KR-LS 29.03± 0.37 ∼ 1× P1

WRN-28-10

Baseline 21.31 1× P2

KD − −
DML 19.82 ∼ 2× P2

KR-LS 19.31± 0.18 ∼ 1× P2

Table 4: Results of comparison with DML and KD on CIFAR-
100. (%)(results averaged over 5 runs)

Comparison with DML and KD
Settings. We further compare KR-LS with two well-known
soft label-based methods, Deep Mutual Learning (DML)
(Zhang et al. 2018) and Knowledge Distillation (KD) (Hin-
ton, Vinyals, and Dean 2015). For DML, we use a combi-
nation of two sub-network with the same architecture (two
ResNet-32 or two WidResNet-28-10 sub-networks) as the
backbone network. For KD, we transfer the knowledge from
WideResNet-28-10 network to ResNet-32 network. In these
experiments, we evaluate all the methods on CIFAR-100
dataset. For fairly comparison, we follow the experimental
settings of (Zhang et al. 2018), which set the mini-batch size
to 64, and drop the learning rate by 0.1 every 60 epochs.
Therefore, the performance of KR-LS here is slightly lower
than the results in Table 1.

Results. The results are shown in Table 4, from which we
can observe: (i) KR-LS outperforms KD and DML under all
settings with the least parameters. (ii) Although KD pre-trains
an extra teacher model which provides extra knowledge to
the student network, and DML trains two identical model si-
multaneously with double parameters, KR-LS achieves more
performance gains over KD and DML.

Sensitivity Analysis
Settings. In this section, we aim to demonstrate the robust-
ness of the only hyper-parameter in KR (i.e. α in the loss func-
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Figure 5: (Left) α with different γ w.r.t. the number of epochs.
(Right) the performance w.r.t. γ.

tion Eq. 9). Recall that we set α to a exponentially decreasing
function α = γt, where t denotes the number of epochs. To
evaluate the robustness of α, we set γ to [0, 0.9, 0.99, 0.995]
and test the performance of each setting. Note that the setting
of γ = 0 is equivalent to the baseline. In addition, we also
set γ to a truncation function as follows:

γ =

{
1 epochs < 20,

0 epochs ≥ 20,
(15)

, which we called 1∗ for simplicity. All settings of γ are
shown in Fig. 5 (Right). We conduct all experiments with
ResNet-18 model on CIFAR-100 datasets.

Results. The results are shown in Fig. 5 (Left). As we can
see, the performances of γ = [0.999, 0.99, 0.9, 1∗] all out-
perform the performance of baseline. Especially, the setting
of γ = 1∗ almost achieve the best performance with only a
slight gap. This result implies that the knowledge refinery
regualrizer plays a more role during the initial stage of the
training phase and prompts us to explore the mystery behind
this phenomenon in the future.

Conclusion
In this paper, we propose Knowledge Refinery (KR), which
regularizes DNNs with decoupled labels. The motivation of
decoupling the label is the observed softness consistency of
the residual label. Extensive experiments on different datasets
and different backbone networks consistently show the per-
formance gains over baselines with only negligible memory
computation. In the future, we will further investigate the fol-
lowing aspects: (i) exploring how to apply decoupled labels to
multi-label tasks, (ii) investigating the theoretical guarantee
for KR and decoupled labels.
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